Advanced Imaging


Advanced Imaging Magazine

Updated: January 12th, 2011 09:49 AM CDT

Orthopedics Researchers use NVIDIA Technology to Study Whiplash

 NVIDIA Quadro technology
Dang Orthopedics, in collaboration with researchers at the University of California—San Francisco, and the New England Musculoskeletal Institute at the University of Connecticut Health Center, uses NVIDIA Quadro technology for evaluating the biomechanical effects of the spine and shoulder when it is exposed to harsh movements such as whiplash.

By Advanced Imaging Editorial Staff

Dang Orthopedics uses computational modeling and mathematical simulation to study the biomechanics of surgery. Working in collaboration with researchers at the University of California, San Francisco and the New England Musculoskeletal Institute at the University of Connecticut Health Center, the California research facility is studying the biomechanics of the spine and shoulder through realistic mathematical representations of human anatomy.

When conservative therapies have failed to treat pain or weakness caused by mechanical deformation or inflammation of the nerve roots in the cervical spine, surgeons may turn to "discectomy and fusion," where the disc between the affected vertebrae is removed and the spine is then stabilized using bone graft or metal plates and screws. Although this operation has excellent outcomes overall, accelerated arthritis in the rest of the spine is a potential future complication. Surgeons hypothesize that increased strain in the remaining motion segments of the spine after surgery contributes to the accelerated arthritis, but research has been difficult due to the inability to measure this change in strain in actual patients and the limitations of testing with anatomic specimens. An accurate computational simulation of the stresses on the cervical spine following surgery was needed to determine the biomechanical consequences of discectomy and fusion.

Dang Orthopedics developed a computational model of cervical spine fusion using Toyota's Total Human Model for Safety (THUMS) technology.

Originally developed to simulate the effect of automotive accidents on the body, THUMS is one of the most sophisticated "whole human" finite element models in use today, with more than 91,000 individual elements. Dang Orthopedics is the first orthopedic research lab in the United States to receive an academic license for THUMS and to adapt the automotive engineering tool to general orthopedic research.

Once Dr. Dang had the cervical spine model complete, he used LS-DYNA, an advanced multipurpose simulation tool, to isolate the biomechanical effects of single- and two-level cervical spine fusion. LS-DYNA was originally developed by the U.S. Department of Energy and Lawrence Livermore National Laboratory for nuclear weapons development and certification.

1 2 next

Subscribe to our RSS Feeds