Advanced Imaging


Industry News

Updated: July 8th, 2008 05:26 PM CDT

ATOMIC FORCE MICROSCOPY; New atomic force microscopy research from Kyushu University outlined

Medical Imaging Week

Current study results from the report, "Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy," have been published. "The regulation of cell shape, which determines cell behaviors including adhesion, spreading, migration, and proliferation in an engineered artificial extracellular milieu, is an important task in tissue engineering and in development of functional biomaterials. To deepen the understandings of shape-dependent cell mechanics, the cell elasticity and structural features of the actin cytoskeleton (CSK) were characterized for shape-engineered fibroblasts; round and spindle-shaped cells cultured on photolithographically microprocessed surfaces, employing the cellular microindentation tests and fluorescence observation of actin CSK by the combination of atomic force microscopy (AFM) and fluorescence microscopy (FM)," researchers in Fukuoka, Japan report.

"The relationships among cell elasticity, the structural features of actin CSK, and engineered cell shape were analyzed and compared with those of control cells that had been cultured on nonprocessed surfaces (termed naturally extended cells). Results showed that the spindle-shaped cells with sparse or no apical stress fibers (ASFs) exhibited similar stiffness to that of the naturally extended cells with dense ASFs. The elasticity of spindle-shaped cells was affected only slightly by the stress fiber (SF) density, which is in marked contrast to the significant correlation shown between cell elasticity and SF density in naturally extended cells," wrote S. Kidoaki and colleagues, Kyushu University.

The researchers concluded: "This result implies that the elasticity of regionally restricted adhesion-surface-induced shape-engineered cells, particularly of highly elongated cells, is affected predominantly by cell shape rather than by structural features of SFs."

Kidoaki and colleagues published their study in the Journal of Biomedical Materials Research Part A(Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy. Journal of Biomedical Materials Research Part A 2007;81(4):803-10).

1 2 3 next

Subscribe to our RSS Feeds